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Abstract
The x-ray multiple diffraction method, which allows us to determine the
piezoelectric coefficients of a single crystal under an external electric field (E),
was applied to Rochelle salt (dos Santos et al 2001 J. Phys.: Condens. Matter 13
10497) for E parallel to the piezoelectric Y direction. In this work, the theory
was extended to consider an observed monoclinic–triclinic distortion under E
application into the other two piezoelectric X and Z directions. Renninger
scans carried out using the chosen (060) primary reflection have provided the
four remaining coefficients through the measurement of the properly chosen
secondary peaks. so that all eight piezoelectric coefficients (d14, d16, d21, d22,
d23, d25, d34 and d36) for Rochelle salt were determined.

1. Introduction

The Rochelle salt crystal (NaKC4H4O6·4H2O) shows ferroelectricity in the temperature region
between −18 and 24 ◦C in which the crystal is monoclinic (C2

2)–P1211 with lattice parameters
a = 11.869 Å, b = 14.316 Å, c = 6.223 Å and β = 89.26◦. Outside this temperature range,
the crystal presents a paraelectric phase [1, 2], for which the space group is orthorhombic
(D3

2)P21212, with lattice parameters a = 11.880 Å, b = 14.298 Å, c = 6.223 Å.
The crystal structure of Rochelle salt was first investigated in 1941 [3]. The investigation

of its crystal structure in the ferroelectric phase has shown the importance of the interactions
between the O(8) atom and K ions for the ferroelectric activity [4]. Rochelle salt is
piezoelectric and therefore it provides different responses to an external stimulus applied to
each crystallographic direction. When an electric field is applied parallel to the X piezoelectric
axis, the corresponding strain towards the [011] direction appears through d14, the most studied
piezoelectric coefficient [5], due to its relationship to the phase transition in this crystal.

Since the piezoelectric effect can occur in all crystallographic directions within the crystal,
a very versatile method based on the x-ray multiple diffraction technique was developed
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to allow the investigation of the electric field effect in the crystal lattice being the first
successful application performed for the non-linear optical organic crystal MNA (meta-
nitroaniline) using synchrotron radiation [6]. Next, other applications for MBANP ((-)-2-
(alpha-methylbenzylamino)-s-nitropyridine) and Rochelle salt were presented considering the
electric field application parallel to the crystal b axis in both cases and the corresponding
piezoelectric coefficients, d21, d22, d23 and d25, were determined [7, 8].

In this work an extension of the basis of this method can allow it to treat E-induced triclinic
distortions in the monoclinic Rochelle salt samples and hence to make it possible to determine
all eight piezoelectric coefficients using the x-ray multiple diffraction technique.

2. Theory

The basic non-centrosymmetric property of a piezoelectric material is directly related to the
anisotropy of this kind of material. The possibility of obtaining a different response in each
crystallographic direction of the material to an applied external stimulus is the basis of the
anisotropy.

Application of an external electric field (Ei,) to a piezoelectric material causes a strain
(ε jk) given by

εi j = di jk Ek (1)

where di jk is the piezoelectric coefficient. This is the converse piezoelectric effect.
Here, an orthogonal set of axes {X, Y, Z} and two vectors �r = {rx , ry, rz} ≡ {ri} and s,

connecting any two points in the crystal, are considered. These two points can be associated
with two atoms or even two particular points of the crystalline lattice. When an electric field is
applied to the crystal, the relative positions of these points change in such a way that�r → �r+��r .
The change in the ratio of the �reθ components defines the strain tensor, εi j . Hence, one can
write down

�r = rir j

r
εi j and �θ = 1

sin θ

[
−ri s j + sir j

rs
+ cos θ

{
r2si s j + s2rir j

(rs)2

}]
εi j . (2)

If the lattice vectors are analysed in a separate way, �r becomes

�a = axax

a
εxx +

ayay

a
εyy +

azaz

a
εzz + 2

axay

a
εxy + 2

ax az

a
εxz + 2

ayaz

a
εyz. (3)

In the case of the Rochelle salt, a monoclinic single crystal, class 2 [9], the vectors
representing the crystallographic axes can be given in a orthogonal frame as

�a = (ax , ay, az) = (a sin β, 0, a cos β), �b = (0, b, 0) and �c = (0, 0, c). (4)

In order to analyse the electric field application in all piezoelectric directions of the Rochelle
salt, equation (1) is written in matrix form using the Voigt [10] notation shown below, as



εxx

εyy

εzz

2εyz

2εzx

2εxy


 =




0 d21 0
0 d22 0
0 d23 0

d14 0 d34

0 d25 0
d16 0 d36



( Ex

Ey

Ez

)
. (5)

Next, we will describe the relationship between the lattice strains and the direction of
application of E :
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(a) �E = Ex x̂ . In this case, the lattice strains are given by

εyz = d14

2
Ex and εxy = d16

2
Ex (6)

and considering the lattice parameter variations from equation (2) after the substitution
of (4), one obtains

�α = −d14 Ex �γ = −[d16 sin β + d14 cos β]Ex . (7)

(b) �E = Ey ŷ. In this case, the lattice distortions are

1

Ey

�a

a
= d21 sin2 β + d23 cos2 β +

d25

2
sin(2β), (8)

1

Ey

�b

b
= d22, (9)

1

Ey

�c

c
= d23, (10)

and
1

Ey
�β = 1

2
sin(2β)(d21 − d23) − sin2(β)d25. (11)

(c) �E = Ez ẑ. Finally, when Ez is applied, the unit cell distortions are

�α = −d34 Ez and �γ = −[d36 sin β + d34 cos β]Ez. (12)

It should be pointed out that equations (6)–(12) relate the unit cell distortion to the
piezoelectric coefficients for a Rochelle salt monoclinic crystal.

2.1. Secondary peak position in a Renninger scan

In the multiple diffraction phenomenon, a set of crystallographic planes, normally parallel
to the crystal surface, called primary planes (hp, kp, �p), are aligned to diffract the incident
beam. By rotation around the primary reciprocal vector, several other planes (hs, ks, �s), called
secondary, with arbitrary orientation inside the crystal also diffract simultaneously with the
primary reflection. The intensity interaction between the primary and the several secondary
reflections is established through the so-called coupling reflection (hp–hs, kp–ks, �p–�s). The
plot of the diffracted primary intensity as a function of the rotation angle (φ) is the Renninger
scan that shows oscillations in the primary intensity as positive (Umweganregung) or negative
(Aufhellung) peaks, depending upon whether the interaction between the primary and the
secondary beams occurs in a constructive or destructive way, respectively.

The angular position of a multiple diffraction peak corresponding to any (hk�) plane, for a
specific wavelength (λ), can be determined in terms of the angle φ±φ0 (the sign ± corresponds
to the entrance and exit of a secondary reciprocal lattice node of the Ewald sphere). φ0 is the
angle between the reference vector and the projection of the secondary vector at the plane
perpendicular to the primary vector. The angular position is then given by [11]

cos(φhk� ± φ0) = 1

2

(H 2 − �H · �H0)√
(1/λ2) − (H 2

0 /4)
√

H 2 − H 2
p

(13)

where �H0 is the primary vector, �H is the secondary vector defined as �Hhk� = h�a∗ + k �b∗ + ��c∗,
�Hp is the projection of the secondary vector parallel to the primary one, expressed by �Hp =

( �H · �H0)( �H0/H 2
0 ) and φ0 is obtained from cos(φ0) = ( �H · �HRe f )/

(√
H 2 − �H 2

p ·
√

H 2
Re f

)
.
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3. Analysis of the secondary reflections for �E = Eyŷ

The secondary peak position can be expressed, in the case of �E = Ey ŷ for a monoclinic
Rochelle salt (α = γ = 90◦ �= β), taking (h000) as the primary, as

cos(φhk� ± φ0) = 1

2

h(h−h0)

a2 sin2 β
+ k2

b2 + �2

c2 sin2 β
− �(2h−h0) cos β

ac sin2 β√
1
λ2 − h2

0

4a2 sin2 β

√
�2

c2 + k2

b2

= f (a, b, c, β). (14)

Thus, the differential of this equation gives the relationship between the MD peak position
and the E-induced lattice distortion:

− sin(φhk� ± φ0)�(φhk� ± φ0) = ∂ f

∂a

∣∣∣∣
hk�

�a +
∂ f

∂b

∣∣∣∣
hk�

�b +
∂ f

∂c

∣∣∣∣
hk�

�c +
∂ f

∂β

∣∣∣∣
hk�

�β. (15)

Since the (h00) is the chosen primary reflection, the a lattice parameter variation is
determined by the differentiation of Bragg’s law

�a

a
= − cot(ωh00)�ω − cot(β)�β. (16)

Working with equations (8) and (11) and also replacing the result in equation (16) one
obtains the d21 piezoelectric coefficient:

d21 = −cot(ωh00)�ω

Ey
. (17)

The other coefficients are determined by choosing adequate secondary reflections, which
are presented next.

(1) Secondary (0k0)

�b

b

(
∂ f

∂b

∣∣∣∣
0k0

)
= tan(φ0k0 ± φ0)�(φ0k0 ± φ0) − �a

a

∂ f

∂a

∣∣∣∣
0k0

− �β
∂ f

∂β

∣∣∣∣
0k0

. (18)

(2) Secondary (00�)

�c

b

(
∂ f

∂c

∣∣∣∣
00�

)
= tan(φ00� ± φ0)�(φ00� ± φ0) − �a

a

∂ f

∂a

∣∣∣∣
00�

− �β
∂ f

∂β

∣∣∣∣
00�

. (19)

(3) Secondary (h0�)

�β

(
∂ f

∂c

∣∣∣∣
h0�

)
= tan(φh0� ± φ0)�(φh0� ± φ0) − �a

a

∂ f

∂a

∣∣∣∣
h0�

− �c

c

∂ f

∂c

∣∣∣∣
h0�

. (20)

4. Analysis of the secondary reflections for �E = Exx̂ and Ezẑ

When the electric field is applied in the Ex x̂ and Ez ẑ directions it is also necessary to consider
that the crystal suffers distortion in the α and γ unit cell angles. In order to take into account
this deformation, the crystal is considered as triclinic.

The triclinic lattice parameters can be decomposed into orthogonal axes as shown below:

�a = (a sin β, 0, a cos β), �c = (0, 0, c) and

�b =
(
−b(cosα cos β − cos α) cosec β, b

√
sin2 α − (cos α cos β − cos γ )2 cosec2 β, b cos α

)
.

(21)
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If the (0k00) is chosen as the primary reflection to keep perpendicular to the y direction,
both X and Z directions are used for the application of E . The secondary peak position is

cos(φhk� ± φ0) =
(

c2h2 + a2�2 − 2ach� cos β − �(ack0 sin2 β+�)




)
ac sin β

√
(c2h2 + a2�2 − 2ach� cosβ)

(
4
λ2 − k2

0 sin2 β

4


)
= f (a, b, c, α, β, γ ) (22)

being � = b cos α(a� − ch cosβ) + b cos γ (ch − a� cosβ) − ack sin2 β and 
 = b2(cos2 α +
cos2 γ − sin2 β − 2 cos α cos β cos γ ).

According to the choice of the adequate secondary reflections from the piezoelectric tensor,
one can determine the coefficients corresponding to the α and γ unit cell angular distortion.

(1) Secondary (0kk)

�α

f

(
∂ f

∂α

∣∣∣∣
0kk

)
= tan(φ0kk ± φ0)�(φ0kk ± φ0) − �γ

f

∂ f

∂γ

∣∣∣∣
0kk

. (23)

(2) Secondary (hh0)

�γ

f

(
∂ f

∂γ

∣∣∣∣
hh0

)
= tan(φhh0 ± φ0)�(φhh0 ± φ0) − �α

f

∂ f

∂α

∣∣∣∣
hh0

. (24)

All Rochelle salt piezoelectric coefficients can be obtained by substituting the above-
determined unit cell parameter variation into equations (7)–(12).

5. Experimental details

Rochelle salt samples were cut with dimensions of 5 ×2.5 ×1.5 mm3 (the x-ray beam reaches
the narrower sample face) and the electric field is applied in the X , Y and Z directions. E
is generated by a DC variable source with low current. The electric contacts are established
through conducting sponges kindly provided by SGL Carbon Group, Meitingen, Alemanha.
They are put in between the metal plates and the larger sample face to avoid mechanical strain
and to provide a uniform E within the sample.

Renninger scans were carried out in a specially developed geometry with a long pipe
collimator (1.75 m) adapted on a single-crystal diffractometer. The obtained divergences are
δv = 107 arc s in the vertical plane and δh = 149 arc s in the horizontal plane. The Cu Kα1

radiation was used in the Renninger scans whereas Cu Kβ was used in the rocking curves. All
measurements were performed using step sizes of 0.0008◦ and 0.005◦ in the ω and φ axes,
respectively. The (060) reflection was chosen as primary for the Renninger scans.

5.1. Results

The experiments in which the electric field was applied parallel to the y axis, i.e. the [010]
direction of the Rochelle salt sample, were already described in detail in [7]. Here, just the
important points and results will be presented for the better understanding of the readers. The
effect of E was looked for in the crystallographic directions [100], [010], [001] and [101], as
predicted by the matrix notation equation (5). The magnitude of the effect in each direction is
proportional to the corresponding converse piezoelectric coefficient. The sample was kept at
T = 22 ◦C (ferroelectric phase) and, for each value of E , rocking curves and Renninger scans
were measured for the primary and secondary reflections previously chosen. The variation
in the peak positions as a function of E were transformed into unit cell distortions through
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Figure 1. Portion around the φ = 0◦ symmetry mirror of the (060) Renninger scan of the
orthorhombic Rochelle salt. The secondary reflection (440) allows to obtain the d16 and d36
coefficients.

equations (8)–(11) and (17). Thus, the piezoelectric coefficients for �E = Ey ŷ were determined
as d21 = 7.0(6)× 10−10 C N−1; d22 = 2.2(9)× 10−9 C N−1; d23 = 2.1(9)× 10−9 C N−1 and
d25 = 3.7(8) × 10−11 C N−1.

In order to determine the other Rochelle salt piezoelectric coefficients, one has to apply
E parallel to the Z direction and look for its effect in the [011] and [110] crystallographic
directions.

Prior to the application of E , (060) Renninger scans were performed to allow the
determination of the symmetry mirrors as well as to choose the adequate secondary reflections
to provide the coefficients associated with the E applied in the Z direction.

Figure 1 shows the region around the φ = 0◦ symmetry mirror of the Renninger scan for
the (060) primary reflection. The (440) secondary reflection that appears in this figure was
used to determine the d36 coefficient.

For each value of E , a (060) rocking curve and Renninger scans for the (440), (4̄40)
and (022) secondary reflections were measured. As expected, several of the rocking curves
provided the same (060) peak position for all E values since the d32 coefficient must be zero
for a monoclinic crystal. On the other hand, the shift in the (440) and (022) secondary peak
positions, which are related to the α and γ angular distortion, can give us d34 and d36 through
equation (12). Figure 2 shows the corresponding distortions as a function of E and the obtained
values are: d34 = 8.2(3) × 10−11 C N−1 and d36 = 1.23(7) × 10−11 C N−1. Again, the d36

coefficient measured by the multiple diffraction method is very close to the 1.168×10−11 C N−1

value published in the literature [12] which also supports the method.
In the last measurements using Rochelle salt, E was applied parallel to the piezoelectric

X direction and the (060) primary reflection was also chosen to keep the scan in the �a × �c plane
for this monoclinic crystal. Therefore, only one symmetry mirror at each 180◦ in φ is obtained
in the whole Renninger scan. The (022) secondary reflection is used in the determination of
the d14 coefficient since it has awakened the interest of several authors due to its variation
with temperature [5]. This anomalous behaviour can be associated with the spontaneous
polarization of the material, which is temperature-dependent.
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Figure 2. Rochelle salt lattice strain obtained from the (000)(060)(440) and (000)(060)(022)
secondary peak shifts as a function of the electric field (Ez) providing the d34 and d36 piezoelectric
coefficients.

Figure 3. Rochelle salt lattice strain obtained from the (000)(060)(440) and (000)(060)(022)
secondary peak shifts as a function of the electric field (Ex ) providing the d14 and d16 piezoelectric
coefficients.

Figure 4. Rochelle salt piezoelectric tensor with the coefficients obtained by the x-ray multiple
diffraction method.

The result for d14 = 2.3(3)× 10−10 C N−1 and d16 = 1.62(6)× 10−12 C N−1 coefficients
obtained from the α and γ angular distortions as a function of E applied towards the X direction
comes from figure 3.

In figure 4 all piezoelectric coefficients for Rochelle salt obtained by the x-ray multiple
diffraction method are shown in a matrix form for better visualization.
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6. Conclusions

In this work, the successful application of the x-ray multiple diffraction method to study E-
induced structural deformation in a Rochelle salt crystal is presented. As result, the four
remaining piezoelectric coefficients needed for this material to complete the piezoelectric
tensor (eight coefficients) were determined.

The great advantage of this method lies in:

(i) its versatility to measure rocking curves and Renninger scans for each E value using the
same geometry;

(ii) the possibility of obtaining three-dimensional information on the lattice analysed;
(iii) its high sensitivity to detect very small E-induced lattice distortions.

These special features of the multiple diffraction method allow one to choose three adequately
cut samples and to use them in order to determine all the piezoelectric coefficients of a crystal.
Therefore, these coefficients are all obtained under the same experimental conditions whereas,
in a two-beam diffraction case, one would need to analyse eight samples, each one cut in a
chosen crystallographic direction to allow for the application of a electric field.

It has been considered that Rochelle salt suffers triclinic deformation under application
of E . Then some modifications to the multiple diffraction theory have to be done, particularly
for the distortion of the α and γ angles, to obtain all the required piezoelectric coefficients.

The results obtained in this work show that the multiple diffraction technique acts as a
precise probe to study the effect of an external electric field in crystals. In fact, it allows for
the determination of all piezoelectric coefficients of any piezoelectric crystal as well as the
analysis of E-induced phase transitions in single crystals.
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